11. El Whitepaper de Bitcoin [P. 1] {Satoshi Nakamoto}

Lecturas de Bitcoin
Lecturas de Bitcoin
11. El Whitepaper de Bitcoin [P. 1] {Satoshi Nakamoto}
/

Siendo este blog y podcast sobre Bitcoin es imperativo que incluyamos el principal documento de Bitcoin: El Whitepaper de Bitcoin.


Bitcoin: un sistema peer-to-peer de dinero electrónico

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org
Traducido al español por @breathingdog

Resumen. El whitepaper de Bitcoin escrito por Satoshi Nakamoto explica una forma de dinero en efectivo electrónico puramente peer-to-peer debería permitir enviar pagos online directamente entre las partes y sin pasar a través de una institución financiera. Las firmas digitales son parte de la solución, pero los beneficios principales desaparecen si un tercero de confianza sigue siendo imprescindible para prevenir el doble gasto. Proponemos una solución para el problema del doble gasto usando una red peer-to-peer. La red sella las transacciones en el tiempo en una cadena continua de proof-of-work basada en hash, estableciendo un registro que no se puede modificar sin rehacer la proof-of-work. La cadena más larga no solo sirve de prueba efectiva de la secuencia de eventos, sino que también demuestra que procede del conjunto de CPU más potente. Mientras la mayoría de la potencia CPU esté controlada por nodos que no cooperen para atacar la propia red, se generará la cadena más larga y se aventajará a los atacantes. La red en sí misma precisa de una estructura mínima. Los mensajes se transmiten en base a “mejor esfuerzo”, y los nodos pueden abandonar la red y regresar a ella a voluntad, aceptando la cadena proof-of-work más larga como prueba de lo que ha sucedido durante su ausencia.

1. Introducción

El comercio en Internet ha llegado a depender casi exclusivamente de las instituciones financieras como terceros de confianza en el proceso de los pagos electrónicos. A pesar de que el sistema funciona suficientemente bien en la mayor parte de las transacciones, sufre la debilidad inherente al modelo basado en confianza. Las transacciones completamente irreversibles no son posibles debido a que las instituciones financieras no pueden evitar mediar en las disputas. El coste de esta mediación incrementa los costes de transacción, limitando su tamaño mínimo útil y eliminando la posibilidad de realizar pequeñas transacciones ocasionales, y hay un coste mayor al perderse la posibilidad de hacer transacciones irreversibles para servicios irreversibles.

Con la posibilidad de ser reversible, la necesidad de confianza crece. Los comerciantes deben tener precaución con sus clientes, solicitándoles más datos de los que de otra forma serían necesarios. Se acepta como inevitable un cierto porcentaje de fraude. Esos costes y la incertidumbre en los pagos se pueden evitar cuando se usa dinero físico en persona, pero no existe mecanismo que permita realizar pagos a través de un canal de comunicación sin la participación de un tercero de confianza. Es necesario, por tanto, un sistema de pago electrónico basado en prueba criptográfica en lugar de confianza, permitiendo que dos partes interesadas realicen transacciones directamente entre ellas, sin necesidad de un tercero de confianza.

Si las transacciones son computacionalmente imposibles de revertir, protegerán a los vendedores del fraude, y cualquier mecanismo de depósito de garantía se puede implementar fácilmente para proteger al comprador. En este documento proponemos una solución al problema del doble gasto usando un servidor de sellado de tiempo, distribuido y peer-to-peer, para generar la prueba computacional del orden cronológico de las transacciones. El sistema es seguro mientras los nodos honestos controlen colectivamente más potencia CPU que cualquier grupo cooperante de nodos atacantes.

2. Transacciones

Definimos una moneda electrónica como una cadena de firmas digitales. Cada propietario transfiere la moneda al siguiente propietario firmando digitalmente un hash de la transacción previa y la clave pública del siguiente propietario, y añadiendo ambos al final de la moneda. El beneficiario puede verificar las firmas para verificar la cadena de propiedad.

El whitepaper de Bitcoin

El problema, por supuesto, es que el beneficiario no puede verificar que uno de los propietarios no haya gastado dos veces la misma moneda. La solución habitual es introducir una autoridad central de confianza, o casa de la moneda, que comprueba cada transacción para que eso no se produzca. Tras cada transacción, la moneda debe regresar a la casa de la moneda para distribuir una nueva moneda, y solo las monedas emitidas directamente desde ella están libres de la sospecha de doble gasto. El problema de esta solución es que el destino de todo el sistema de dinero depende de la compañía que gestiona la casa de la moneda, por la cual pasa cada transacción, igual que un banco.

Necesitamos una forma de que el beneficiario sepa que los propietarios previos no han firmado transacciones anteriores. Para nuestros propósitos, la transacción más temprana es la que cuenta, así que no nos preocupamos de los intentos de doble gasto posteriores. La única manera de confirmar la ausencia de una transacción es tener conocimiento de todas las transacciones. En el modelo de la casa de la moneda, esta tiene conocimiento de todas las transacciones y decide cuáles llegaron primero. Para lograr esto sin la participación de una parte de confianza, las transacciones han de ser anunciadas públicamente [1], y necesitamos un sistema para que los participantes estén de acuerdo en un único historial del orden en que fueron recibidas. El beneficiario necesita prueba de que en el momento de la transacción la mayor parte de los nodos estaban de acuerdo en que esa fue la primera que se recibió.

3. Servidor de sellado de tiempo

La solución que proponemos comienza con un servidor de sellado de tiempo. Un servidor de sellado de tiempo trabaja tomando el hash de un bloque de ítems para sellarlos en el tiempo y notificar públicamente su hash, como un periódico o un post Usenet [2-5]. El sellado de tiempo prueba que los datos han existido en el tiempo, obviamente, para entrar en el hash. Cada sellado de tiempo incluye el sellado de tiempo previo en su hash, formando una cadena, con cada sellado de tiempo adicional reforzando al que estaba antes.

El whitepaper de Bitcoin
El whitepaper de Bitcoin

4. Proof-of-work

Para implementar un servidor de sellado de tiempo distribuido de forma peer-to-peer, necesitaremos emplear un sistema de proof-of-work similar al Hashcash de Adam Back [6], más que al de los periódicos o los post Usenet. La proof-of-work consiste en escanear en busca de un valor que cuando fue hasheado, al igual que con SHA-256, el hash comience con un número de cero bits. El trabajo medio que hace falta es exponencial en el número de cero bits requeridos y puede verificarse ejecutando un único hash.

Para nuestra red de sellado de tiempo, implementamos la proof-of-work incrementando un nonce en el bloque hasta que se encuentre un valor que dé al hash del bloque los cero bits requeridos. Una vez que se ha agotado el esfuerzo de CPU para satisfacer la proof-of-work, el bloque no se puede cambiar sin rehacer el trabajo. A medida que bloques posteriores se encadenen tras él, el trabajo para cambiar un bloque incluiría rehacer todos los bloques siguientes.

La proof-of-work también resuelve el problema de determinar la representación en la toma de decisiones mayoritarias. Si la mayoría basada en un voto por IP, podría subvertirse por cualquiera capaz de asignar muchas IPs. La proof-of-work es esencialmente un voto por CPU. La decisión de la mayoría está representada por la cadena más larga, en el cual se ha invertido el mayor esfuerzo de proof-of-work. Si la mayoría de la potencia CPU está controlada por nodos honestos, la cadena honesta crecerá más rápido y dejará atrás cualquier cadena que compita. Para modificar un bloque pasado, un atacante tendría que rehacer la proof-of-work del bloque y de todos los bloques posteriores, y entonces alcanzar el trabajo de los nodos honestos. Demostraremos más adelante que la probabilidad de que un atacante más lento los alcance, disminuye exponencialmente a medida que se añaden bloques posteriores.

Para compensar el aumento en la velocidad del hardware y el interés variable de los nodos activos a lo largo del tiempo, la dificultad de la proof-of-work está determinada por una media móvil que apunta a un número medio de bloques por hora. Si se generan muy deprisa, la dificultad aumenta. Esto se le conoce como la minería de bitcoins.

5. Red

Los pasos para ejecutar la red son los siguientes:

1) Las transacciones nuevas se transmiten a todos los nodos.
2) Cada nodo recoge todas las transacciones en un bloque.
3) Cada nodo trabaja en resolver una proof-of-work compleja para su bloque.
4) Cuando un nodo resuelve una proof-of-work, transmite el bloque a todos los nodos.
5) Los nodos aceptan el bloque si todas las transacciones en él son válidas y no se han gastado con anterioridad.
6) Los nodos expresan su aceptación del bloque al trabajar en crear el siguiente bloque en la cadena, usando el hash del bloque aceptado como hash previo.

Los nodos siempre consideran correcta a la cadena más larga y se mantendrán trabajando para extenderla. Si dos nodos transmiten simultáneamente diferentes versiones del siguiente bloque, algunos nodos recibirán una antes que la otra. En ese caso, trabajarán sobre la primera que hayan recibido, pero guardarán la otra ramificación por si acaso se convierte en la más larga. El empate se romperá cuando se encuentre la siguiente proof-of-work y una ramificación se convierta en la más larga; los nodos que trabajaban en la otra ramificación cambiarán automáticamente a la más larga.

La transmisión de nuevas transacciones no precisa alcanzar todos los nodos. Con alcanzar a la mayoría de los nodos, entrarán en un bloque en poco tiempo. Las transmisiones de nodos también toleran mensajes perdidos. Si un nodo no recibe un bloque, lo reclamará cuando reciba el siguiente bloque y se dé cuenta de que falta uno.

6. Incentivo

Por convención, la primera transacción en un bloque es una transacción especial con la que comienza una moneda nueva, propiedad del creador del bloque. Esto añade un incentivo a los nodos para soportar la red, y proporciona una forma de poner las monedas en circulación, dado que no hay autoridad central que las distribuya. La adición estable de una constante de monedas nuevas es análoga a los mineros de oro que consumen recursos para añadir oro a la circulación. En nuestro caso, es tiempo de CPU y electricidad lo que se gasta.

El incentivo también se basa en las comisiones por transacción. Si el valor de salida de una transacción es menor que el valor de entrada, la diferencia es una comisión por transacción que se añade al valor de incentivo del bloque que contiene la transacción. Una vez que un número predeterminado de monedas ha entrado en circulación, el incentivo puede evolucionar hacia comisiones de transacción y estar completamente libre de inflación.

El incentivo puede ayudar a que los nodos permanezcan honestos. Si un atacante codicioso fuera capaz de reunir más potencia CPU que la de todos los nodos honestos, tendría que escoger entre usarla para defraudar a la gente robándoles los pagos recibidos, o usarla para generar nuevas monedas. Debe encontrar más rentable respetar las reglas, esas reglas que le favorecen entregándole más monedas nuevas que a todos los demás en conjunto, que socavar el sistema y la validez de su propia riqueza.

Esta fue solo la primera parte, el documento continua aquí.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Comparte este Articulo!!!

Si encuentras valor en el articulo, compartelo con tus amigos.

Scroll to Top